Scores on the Doors: An Analysis of Food Hygiene Ratings across the UK

Author: James Salsbury, Supervisor: Dr. Colin Gillespie School of Mathematics, Statistics & Physics, Newcastle University

Motivation

Aim: Are Food Hygiene Ratings randomly scattered across the country, and if not, can we find any factors that explain the distribution of ratings?

Introduction: Food Hygiene Ratings

- Every UK food establishment is required to have a food hygiene inspection[1]
- The inspectors give marks (the more marks the worse) for:
 - **Hygiene**: cleanliness, storage of food, ...
 - **Structural**: layout of the kitchen, ventilation, ...
 - **Management**: paperwork, training, ...
- Marks are combined to give an overall score

Score	Value					
Overall score	0-15	20	25-30	35-40	45-50	> 50
Highest permitted score	5	10	10	15	20	-
Rating	5	4	3	2	1	0
	Better			\rightarrow	N	/orse

Deprivation Data

- The government publish deprivation data every four to five years
- England is split up into 32,844 Lower Layer Super Output Areas (LSOAs) for purposes such as the census and deprivation data
- Each LSOA is given a score (the higher the more deprived) for each of the following seven criteria:
 - Income
 - Employment
 - Education
 - Health
- Crime
- Barriers to Housing
- Living Environment
- An overall deprivation score is calculated by combining the seven above statistics. We see the score vs rank for every LSOA in England in Figure 3

Ordinal Logistic Regression: Definition

- Let Y be an ordinal outcome with \mathcal{J} categories. Then $Pr(Y \leq j)$ is the cumulative probability of Y being less than or equal to a specific category, with j = 1, ..., j - 1
- ► The odds of being less than or equal to a particular category is:

 $\frac{\Pr(Y \le j)}{\Pr(Y > j)},$

- for $j = 1, ..., \tilde{j} 1$
- ► As we have cumulative probabilities, we can write $\Pr(Y > j) = 1 - \Pr(Y \le j)$
- If we take the log of the odds fraction, this is known as the **logit**, so we have the following:

 $\log\left(\frac{\Pr(Y \le j)}{\Pr(Y > j)}\right) \equiv \log it[\Pr(Y \le j)]$

- ► To use ordinal logistic regression in R we use the clm() function, which re-parameterises the model as:

Table 1: Overall Scores mapped to Food Hygiene Ratings.

The Data

- Data was downloaded from the Food Standards Agency API
- Only considered establishments in England
- ► There are ~ 400,000 establishments with ratings

Figure 1: Ratings of the establishments.

Fourteen types of establishment - Table 2

Туре	Count	Туре	Count
Restaurant/cafe/canteen	102,600	Retailers - other	87,800
Other catering premises	53,600	Takeaway/sandwich shop	47,600
Pub/bar/nightclub	44,800	Caring premises	34,600
School/college/university	27,100	Mobile caterer	20,100
Hotel/bed & breakfast	13,700	Retailers - supermarkets	11,500
Manufacturers/packers	6,200	Distributors/transporters	2,000
Farmers/growers	800	Importers/exporters	400

Figure 3: Score vs rank for all the LSOAs in England.

- Deprivation scores are linked to the LSOA being an urban/rural area
- ▶ 12% of people living in urban areas live in an area that is in the top 10% most deprived areas, this drops to only 1% when we consider rural areas
- Therefore, some of the variation we see in Figure 2 could be explained by deprivation data

Shiny Application (see footer)

- As visualising the data, as seen in Figure 2, is clearly very informative we have developed a Shiny[2] App
- The app allows the user to explore a map of England broken down into postcode districts - with summary statistics and bar charts for every postcode district
- Users are also able to view all the establishments in a postcode district by their ratings, so they see where the higher/lower rated establishments are found

$logit[Pr(Y \le j)] = \beta_{j0} - \eta_1 x_1 - \ldots - \eta_p x_p,$

where β_{i0} is the intercept term for the *j*'th category of interest and η_i is the coefficient of the *i*'th covariate x_i

Modelling

- ► We have built an ordinal logistic regression model which includes the following covariates: deprivation score of postcode of establishment, food chain indicator, type of establishment and local authority
- **Establishments are:**
 - **2x** more likely to have a lower rating if they are in the **most** deprived area, compared to the **least** deprived
 - **5x** more likely to have a lower rating if they **are not** a food chain, compared to if they **are** a food chain
 - **10x** more likely to have a lower rating if they are a takeaway/sandwich shop, compared to if they are a school/college/university
 - **7x** more likely to have a lower rating if they are in the **Barking** and Dagenham local authority, compared to if they are in the **Richmondshire** local authority
- These interpretations indicate that there are many different factors which influence the rating of an establishment; local authority is interesting as we would expect there to be no difference in ratings after accounting for other covariates
- Figure 5 shows the regression estimates for the types of establishment; the lower the estimate the more likely the

 Table 2: Different types of establishments (to nearest 100).

Visualising the Data

- The establishments were grouped by their postcode district then a mean Food Hygiene Rating was calculated for each district
- Postcode districts were plotted onto a choropleth map to show trends/variation

Figure 4 shows a screenshot from the app - with the NE2 postcode district chosen, viewing the establishments with ratings 2 and 4. The cursor is hovering over "The *Tower Cafe*"

Figure 4: Screenshot from the Shiny App.

Ordinal Logistic Regression: Background

Statistical models help determine which (if any) covariates are significant in explaining the distribution of ratings

establishments of that type will be rated lower

Figure 5: Regression estimates and error bars (±2× Std.Error) for the type of establishment (with caring premises as the baseline).

Figure 6 shows the regression estimates for the local authorities; again, the lower the estimate the more likely establishments in the local authority will be rated lower

Figure 6: Regression estimates and error bars ($\pm 2 \times$ Std.Error) for the local authority (with Adur, West Sussex as the baseline).

Conclusion

► We were able to visually see that Food Hygiene Ratings are not randomly scattered across England

Figure 2: Mean Food Hygiene Ratings by postcode district.

- We would expect to see random scatter of Food Hygiene Ratings if there was no correlation between ratings and geographical location of establishments
- However, from Figure 2, we see that this is not the case
- ► In general, there are clusters of lower rated districts in city centres

- Specifically, we fit ordinal logistic regression models, which were first considered by Peter McCullagh in 1980 [3]
- An ordinal logistic regression model is appropriate when the outcome is ordered but we do not necessarily know the differences between the outcomes
- Our outcomes (the ratings) are ordered but the difference between 4 and 5 is not necessarily equal to the difference between 0 and 1
- ▶ We include covariates in the same way as in *simple linear regression* - we determine the effect of a covariate whilst "fixing" all the other covariates
- ► We were able to find covariates which explain the distribution of ratings, such as: deprivation data, food chain, type of establishment and local authority
- ► We were able to develop a Shiny App (see footer) which allows users to view a map of England by postcode district

References

- Food Standards Agency: Food Hygiene Rating Scheme. https://www.food.gov.uk/safety-hygiene/food-hygiene-rating-scheme. Accessed: 7-Oct-2020.
- [2] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges shiny: Web Application Framework for R, 2021. R package version 1.6.0.
- [3] Peter McCullagh. Regression models for ordinal regression. Journal of the Royal Statistical Society. Series B (Methodological), 42(2):109–142, 1980.

https://jamesalsbury.shinyapps.io/interactiveshinymap/

